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Abstract
The structure of the invariants of perfect Lie algebras with nontrivial centre
is analysed. It is shown that if the radical r of a semidirect sum s

−→⊕ Rr of
a semisimple and a nilpotent Lie algebra has a one-dimensional centre, then
the defining representation R contains a copy of the trivial representation D0

of s. Using this fact, a criterion can be deduced to eliminate variables and
to characterize the Casimir operators of an algebra g by means of certain
subrepresentations R′ of R. For rank 1 Levi subalgebras s, all representations
leading to perfect Lie algebras with a radical isomorphic to a Heisenberg Lie
algebra are determined. We prove that the number of Casimir operators of such
an algebra is fixed for any dimension, and moreover that they can be explicitly
computed by means of determinantal formulae obtained from the brackets of
the algebra. For rank n � 2 Levi part a stabilization result of this nature is also
given.

PACS number: 02.20.Sv

1. Introduction

Among perfect Lie algebras (i.e. algebras coinciding with their derived subalgebra),
semisimple algebras are without doubt the most studied and best understood class in the
physical literature. The problem of characterizing their representations and their Casimir
operators constitutes nowadays a classical result, where the physical motivation played a
decisive role [1–3]. The pioneering work of Racah on the group theory and their applications to
spectroscopy contributed to make Lie algebras an essential tool of modern physics, and opened
new and alternative approaches to many important physical questions. The branching rules and
tensor product decompositions of representations are of great importance in the classification
of electron configurations, determination of quantum numbers of a system and classification of
particles or nuclear rotational states [4–7]. Most of these techniques are based on the structure
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of semisimple Lie algebras, but in many problems, such as the combination of relativistic
invariance and interaction symmetry [8] or generalization of the Holstein–Primakoff boson
formalism [9], this class is not sufficient and we find symmetries described by nonsemisimple
Lie algebras. For these no structural theory is known, and the characterization of representation
indices and eigenvalues of the Casimir operators is a difficult problem which always forces
to concentrate on specific algebras. Even the Levi decomposition of a Lie algebra does not
simplify the computation of the Casimir invariants, as could be believed, and algebras of this
type having only constant functions as invariants can be found [10]. However, if the algebra
is perfect (non-semisimple) some generic results analogous to those known for semisimple
algebras can be obtained considering only the Levi part and the defining representation R of
the algebra g = s

−→⊕ Rr, and under some additional assumptions quite effective bounds for the
number of Casimir operators can be deduced [11]. These algebras are also distinguished by
the fact that any invariant can be reduced, after symmetrization, to a classical Casimir operator.

In this paper we continue with the analysis outlined in [11] for perfect Lie algebras
g = s

−→⊕ Rr, and focus on Lie algebras of this type whose defining representation R contains
copies of the trivial representation. Although most of the formulae given in [11] are still
valid for this case, the case where R contains copies of the trivial representation D0 is of
interest. Indeed, we will see that for radicals (which are nilpotent) whose centre is one
dimensional, R necessarily contains a copy of D0. This makes from perfect Lie algebras
with a one-dimensional centre an exception which is physically relevant since, for example,
the Carroll algebra [12] or the wsp(2, R) Lie algebras used in microscopic theory of nuclear
collective motions [13] are special cases of this algebra type. The most relevant case is where
the radical is isomorphic to a Heisenberg Lie algebra, which leads naturally to the problem
of determining all the representations of semisimple Lie algebras s such that a perfect Lie
algebra g = s

−→⊕ Rr with r isomorphic to the Heisenberg Lie algebra exists. For rank 1 Levi
subalgebras the problem is completely solved, and it is shown that the number of Casimir
operators does not depend on the dimension of g. In particular, both real forms sl(2, R) and
so(3) of sl(2, C) can be treated simultaneously. Moreover, we give a determinantal formula to
determine explicitly the Casimir operators without being forced to solve differential equations
or use other alternative methods. This formula is deduced from a specific expansion of the
commutator matrix A(g) comprising the brackets of the algebra. We also show that for the
general case of rank(s) � 2, we also obtain a stabilization result for the number N (g) of
Casimir operators. The result is a direct consequence of the structure of the corresponding
commutator matrix A(g) of perfect Lie algebras having the Heisenberg radical. However,
even if the number of invariants can be determined explicitly, there is a priori no obvious
generic method to compute them in an effective and easy manner.

Unless otherwise stated, any Lie algebra g considered in this work is indecomposable and
is defined over the field R of real numbers. We adopt a convention whereby the nonwritten
brackets are either zero or obtained by antisymmetry. We also use the Einstein summation
convention. Abelian Lie algebras of dimension m will be denoted by mL1.

2. Perfect Lie algebras with one-dimensional centre

As told before, we will focus on the invariants of a specific class of algebras, called perfect,
which are, in some sense, a natural generalization of semisimple Lie algebras, but allow
additional properties such as the existence of central elements.

Definition 1. A Lie algebra g is called perfect if g = [g, g].
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We recall briefly the standard technique to compute the invariants, in particular the Casimir
operators of an algebra [14]. If {X1, . . . , Xn} is a basis of g and

{
Ck

ij

}
the structure constants

over this basis, we represent g in the space C∞ (g∗) by means of the differential operators

X̂i = −Ck
ij xk

∂

∂xj

(1)

where [Xi,Xj ] = Ck
ijXk (1 � i < j � n). The operators X̂i satisfy the brackets

[X̂i, X̂j ] = Ck
ij X̂k and constitute a representation of g. An analytic function F ∈ C∞ (g∗) is

called an invariant of g if and only if it is a solution of the system:

{X̂iF = 0, 1 � i � n}. (2)

If F is a polynomial, then it corresponds to a classical Casimir operator, after symmetrization.
The system (2) can also have solutions which are not polynomials, in which case we call it
a ‘generalized Casimir invariant’ by analogy with the classical case. Solutions of this type
can also be used to label irreducible representations of g. If (2) has no solutions at all (as
happens, for example, for the two-dimensional solvable affine algebra r2 or other large classes
of solvable Lie algebras [15–18]) we say that the invariants of the coadjoint representation
ad∗ are trivial. The particular structure of the systems associated with Lie algebras allows us
to apply the known techniques from the theory of partial differential equations to compute the
cardinal N (g) of a maximal set of functionally independent solutions in terms of the brackets
of the algebra g over a given basis

N (g) := dim g − sup
x1,...,xn

{
rank

(
Ck

ij xk

)
1�i<j�dim g

}
(3)

where A(g) := (
Ck

ij xk

)
is the matrix which represents the commutator table of g over the basis

{X1, . . . , Xn} [19]. Evidently this quantity constitutes an invariant of g and does not depend
on the particular choice of basis.

As an illustrative example of this analytic procedure to compute the invariants and of the
class of Lie algebras, we are interested in here to consider the ten-dimensional Lie algebra
g = sl(2, R)

−→⊕ D 3
2
⊕D 1

2
⊕D0(h1 ⊕ 4L1) given by the commutator matrix

A(g) =




0 2x2 −2x3 3x4 x5 −x6 −3x7 x8 −x9 0
−2x2 0 x1 0 3x4 2x5 x6 0 x8 0
2x3 −x1 0 x5 2x6 3x7 0 x9 0 0

−3x4 0 −x5 0 0 0 0 0 0 0
−x5 −3x4 −2x6 0 0 0 0 0 0 0
x6 −2x5 −3x7 0 0 0 0 0 0 0

3x7 −x6 0 0 0 0 0 0 0 0
−x8 0 −x9 0 0 0 0 0 x10 0
x9 −x8 0 0 0 0 0 −x10 0 0
0 0 0 0 0 0 0 0 0 0




(4)

where the entry aij corresponds to the bracket [Xi,Xj ] over the basis {X1, . . . , X10}.
Observe that g is indecomposable with a centre generated by X10. Moreover g is a perfect
Lie algebra. Since rank A(g) = 8, we obtain two invariants, one of which is automatically
I1 = x10 for corresponding to a central element. It can be easily shown that a complete set
of invariants are given by I1 and I2 = −x2

5x2
6 + 4x3

6x4 + 4x3
5x7 − 18x5x6x7x4 + 27x2

7x2
4 . The

interesting fact about this example is that the invariant I2 does not depend on the variables
associated with the Levi part and the variables associated with the Heisenberg Lie algebra
(the variable corresponding to the centre already being an invariant I1 of the algebra). This
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shows a pathology which will turn out to be quite typical of perfect Lie algebras having a
one-dimensional centre, and which enables us, in a certain sense, to reduce the study to the
case of Heisenberg radicals.

In [11] we began the systematic study of the invariants of (nonsemisimple) perfect Lie
algebras, and pointed out their interest, for mainly two reasons: on one hand, they constitute a
class of algebras containing the semisimple Lie algebras, which allow the extension of some
properties of the latter to the general case; and on the other hand, for perfect Lie algebras the
Casimir operators always exist. Moreover, we justified that for perfect Lie algebras we can
find a fundamental set of invariants F formed by the Casimir operators (more precisely their
existence, their nature having been analysed earlier [20]). We also searched upper bounds for
the quantity N (g) when the defining representation of g did not contain copies of the trivial
representation of s. These bounds were obtained considering only the representation R of s

describing the semidirect sum, with independence on the structure of the radical (which has
to be nilpotent). The upper bound formulae obtained in [11] also remain valid in this case.
The main difference lies in the structure of the radical. In general we cannot infer formulae
for the invariants when the centre is nonzero, since the radical is necessarily non-Abelian if
g is indecomposable, and the exact relation of the brackets in the radical with respect to the
number of copies of D0 appearing in R cannot be comprised in an argument which remains
valid for all possible cases. However, if the radical is itself decomposable as a nilpotent Lie
algebra, a combination of the results in [10, 11] allows a useful insight into the structure of the
invariants of these algebras. The main interest for perfect Lie algebras of this type for physical
applications corresponds to the case where the centre of the radical is one dimensional. Such
algebras appeared first in the classification of kinematical Lie algebras [12], and later in the
group theoretical analysis of nuclear collective motions by means of the boson formalism [13].

Proposition 1. Let s
−→⊕ Rr be a perfect Lie algebra such that dim Z(r) = 1. Then R contains a

copy of the trivial representation D0 of s. Moreover, the function I = z (z being the variable
associated with the generator Z of the centre) is always an invariant of s

−→⊕ Rr.

Proof. Since the representation R acts as a derivation on the radical [21], we have that
[s, Z(r)] ⊂ Z(r), and since the centre is one dimensional, generated by an element Z, for
any X in s we have [X,Z] = λXZ with λX ∈ R (since the Levi part acts on the radical by
derivations, and the centre is a characteristic ideal). Now for any pair X1, X2 ∈ s we have, by
the Jacobi identity

[X1, [X2, Z]] + [Z, [X1, X2]] + [X2, [Z,X1]] = [Z, [X1, X2]] = 0. (5)

This implies that λ[X1,X2] = 0. Since s is itself perfect for being semisimple, any element X
in s can be obtained as a bracket [X1, X2] for certain elements X1, X2 ∈ s. Therefore, (5)
implies [X,Z] = 0 for all X in s, thus R contains a copy of the trivial representation and Z
generates the centre of g. �

This result was already stated for rank 1 algebras in [10]. We insist on the fact that the
assertion follows from the dimension of the centre and the fact that semisimple Lie algebras
are themselves perfect. Moreover, even if the centre of the resulting algebra is nontrivial, the
algebra is indecomposable whenever the radical is indecomposable as nilpotent Lie algebra.
We further observe that the conclusion is false for a centre of dimension �2. Take for example,
the nine-dimensional Lie algebra g = sl(2, R)

−→⊕ 2D1r, where r is given by the brackets
[X4, X5] = 2X9, [X4, X6] = X8 and [X5, X6] = 2X9 over the basis {X4, . . . , X9}. The
radical has thus a three-dimensional centre generated by {X7, X8, X9}, but the representation
describing the semidirect product does not contain copies of D0 (moreover the centre of
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g reduces to zero). Thus the case of one-dimensional centres is exclusive of the case of
representations containing a copy of the trivial representation. From the physical point of
view, this is also the most interesting case of perfect Lie algebras (of this type), due to the
central role that the Heisenberg Lie algebra plays in applications.

3. Embedding of Heisenberg algebras into perfect Lie algebras

Lie algebras which are the semidirect product of a Heisenberg hn of dimension (2n + 1) and
a semisimple Lie algebra s have shown their importance in the microscopic theory of nuclear
collective motions [13]. In [22] it was shown that the Casimir operators of the semidirect
sums hn

−→⊕u(n) and hn
−→⊕ sp(2n, R) can be obtained from the Perelomov–Popov formulae by

using a realization of the algebra by means of shift operators. The key fact of this method is
the relation between the number of boson operators of the Heisenberg part hn and the rank
of the semisimple part, which allows us to transform the bases in order to adapt them to the
operators formulae [13, 23].

Rather than using a fixed basis to denote the (2n+ 1)-dimensional Heisenberg Lie algebra
hn, in what follows we will use the fact that this algebra is completely determined by the
property of being the only nilpotent Lie algebra having a one-dimensional centre and whose
derived subalgebra [hn, hn] coincides with this centre. This will imply that we can always
find a basis {X1, . . . , X2n+1} such that the centre is generated by X2n+1 and the only nonzero
brackets are [Xi,X2n+1−i]. It is convenient to distinguish two cases: either the radical r is
isomorphic to the Heisenberg Lie algebra hm for some m or r = hm ⊕ r′ (observe moreover
that if R contains more than one copy of D0 and the radical is the Heisenberg algebra, g is
not perfect anymore1). We are mainly interested in the first case, which turns out to be the
most interesting for applications. We will see that radicals isomorphic to Heisenberg algebras
impose some restrictions on the admissible representations. Concerning the second case, we
will develop a criterion that eliminates some variables and reduces the problem to the situation
of Abelian radicals studied in [11].

Proposition 2. Let gm = s
−→⊕ Rhm be a perfect Lie algebra. Then all algebraically independent

Casimir operators of gm other than the invariant corresponding to the generator of the centre
depend on all the variables of gm.

The proof follows from system (2) and the following observations concerning the structure
of the algebra. If {X1, . . . , Xq, . . . , Xq+2m+1} is a basis of g such that {X1, . . . , Xq} is a basis
of s and {Xq+1, . . . , X2m+1+q} a basis of hm such that the centre is generated by X2m+1+q , then
any nonconstant invariant F of g different from I = x2m+1+q satisfies

∂F

∂x2m+1+q

�= 0. (6)

Otherwise the structure of the radical would imply that
∂F

∂xq+t

= 0 1 � t � 2m (7)

and since g is perfect and R does not contain further copies of D0, for any Xq+t we can find
Xi0 ∈ s, Xq+s0 ∈ hm such that

[
Xi0 , Xt+s0

] = Xq+t . This shows that the equations

X̂q+t .F := −C
k+q

q+t,j xk+q

∂F

∂xj

= 0 1 � t � 2m (8)

1 If g = s
−→⊕ Rhm is perfect and R contains more than one copy of D0, the structure of the radical implies that

[hm,hm] = Z(hm), which is one dimensional. Therefore, there exists an element X ∈ hm not lying in the centre such
that [s, X] = 0, but this implies that X /∈ [g,g], which contradicts the perfectness of g.
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would be satisfied only if F = const. Similarly, if for an invariant F we have

∂F

∂xq+t0

= 0 (9)

for some t0 ∈ {1..2m}, consider all the basis elements Xik ∈ s and Xq+jp
∈ hm such that[

Xik , Xq+jp

] = C
q+t0
ik ,jp+qXq+t0 �= 0. (10)

The corresponding equations X̂ik .F = 0 show that ∂F
∂xq+jp

= 0 for all these jp. It will also

follow from the equations X̂q+jp
.F = 0 that ∂F

∂xik

= 0 for some indices ik . Repeating the
argument for all other variables xq+jp

it will follow after some iteration that

∂F

∂xi

= 0 1 � i � q. (11)

This is a consequence of the structure of the weight diagram of R (which contains only one copy
of D0) and the action of the operators associated with the root system of s [7, 24]. Therefore,
the invariant F would be independent of the variables associated with the Levi subalgebra, and
from the structure of the Heisenberg radical it would follow at once that F = const.

This result shows that, even if the Lie algebra has a more elementary nature for having
a nontrivial centre, the Casimir operators are much more difficult to determine, since no
reduction of elimination of variables of the system (2) can be obtained. In particular, no lower
bounds for the number of Casimir operators can be obtained for this case. These algebras
can thus be compared with the special affine Lie algebras sa(n, R) [25], and whose direct
determination of the invariant is a quite elaborate problem (a determinantal argument based
on extensions of Lie algebras has been developed in [26] to compute these operators).

We now prove that under some circumstances, the methods of [11] can be adapted for the
case where the radical is the direct sum of Heisenberg and Abelian algebras. Recall that for a
semisimple Lie algebra s the normalization index n(s) is defined as the minimal positive integer
such that if R is an irreducible representation of s of dimension dim R := dim(s) + n(s), then
all Casimir operators of s

−→⊕ R(dim R)L1 are obtained from the representation matrix ρR(s).
This index can be used to deduce a sufficiency criterion to characterize the Casimir operators
of an algebra by a certain representation of the Levi part.

Proposition 3. Let s
−→⊕ Rhm be a perfect Lie algebra. Then for any representation R′ such

that dim R′ > n(s) + dim(s), the number of Casimir operators of the (perfect) Lie algebra
g′ = s

−→⊕ R⊕R′(hm ⊕ (dim R′)L1) is given by

N (g′) = dim R′ − rankρ(R′)(s) + 1. (12)

Moreover, the Casimir operators of g′ do not depend on the variables associated with s and
hm (up to the invariant associated with the generator of the centre).

Proof. Over a basis {X1, . . . , Xn} of g the system (2) giving the invariants can be written as


A(s) ρR1(s) ρR2(s) 0

−ρT
R1

(s) 0 0 0

−ρT
R2

(s) 0 Ã(hm) 0

0 0 0 0







∂F
∂x1

:
:

∂F
∂xn


 = 0 (13)

where Ã(hm) is the submatrix of A(hm) obtained by deleting the column and row corresponding
to the generator of the centre.
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Since by assumption dim R1 > dim(s) + n(s), the subsystem

ρR1(s)

(
∂F

∂xi

)T

1�i�dim(s)

= 0 (14)

which shows that ∂F
∂xi

= 0 for 1 � i � dim(s) [11]. Since the radical is the Heisenberg Lie
algebra, we can extract the subsystem

A(hm)

(
∂F

∂yi

)T

1�i�dim(hm)

= 0 (15)

proves that

∂F

∂yi

= 0 1 � i � dim(hm) (16)

since the only brackets of hm are of the form [Yi, Ydim(r)−i] = Ydim(r). Therefore, the invariants
of the algebra are given by

ρR1(s)

(
∂F

∂zi

)T

1�i�dim R1

= 0 (17)

where
{
Z1, . . . , Zdim(R1)

}
is a basis of the representation R1. Thus the Casimir operators are

exactly those of the Lie algebra s
−→⊕ R1(dim R1)L1 to which I = ydim(r) is added for being a

central element. �

In particular the actual number of invariants for these algebras is considerably lower
than the value obtained using the formulae of [11]. We remark that this kind of elimination
of variables is not possible if the perfect Lie algebra has Abelian radical, or the defining
representation does not contain copies of the trivial representation of the Levi part. This fact
makes the analysis of perfect algebras with one-dimensional centre of particular interest. An
interesting and physically notable problem arises from this context

Problem. Given a semisimple Lie algebra s, for any n � 1 does there exist a (nontrivial)
representation R of s such that the Lie algebra

g := s
−→⊕ Rhm (18)

is perfect?

Special cases have already been treated in the literature, such as in the cited wu(n) and
wsp(2n, R) algebras [13, 22], subalgebra chains obtained when analysing branching rules [9]
or the classifications in low dimensions [21]. A general solution seems however difficult to find,
due to the complexity of extracting all the representations of semisimple Lie algebras which are
compatible with the brackets defining the Heisenberg Lie algebra (at least for the exceptional
case). Moreover, depending on the semisimple Lie algebra, for the first values of n the problem
may not have solution. Take, for instance, the Lie algebra su(3). Since the fundamental
representation is of degree three, there is no perfect Lie algebra g having su(3) as the Levi part
and such that the radical is isomorphic to the three (respectively, five) dimensional Heisenberg
Lie algebra h1 (respectively, h2). The first value for which such an algebra exists is n = 3, with
the representation 3⊕3⊕1 (this algebra appears naturally from the case wu(3) of [13]). In the
following two sections we will prove that the problem has a solution, for all n, when we take
the rank 1 Levi subalgebra. Further it will be shown that once a value of n has been found,
we obtain a stabilization result for the number of invariant operators.
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4. Levi subalgebras s = sl(2, R), so(3)

In this section, we analyse the perfect Lie algebras with the Heisenberg hm whose Levi
subalgebra s is of rank 1. This case will show its interest, since the number of Casimir
operators can be determined explicitly regardless of the dimension. Moreover, these operators
can be computed by means of a generalization of a determinantal method introduced in [26],
and avoids completely the methods of differential equations. If g is perfect and dim(Z(g)) = 1,
then R contains necessarily a copy of the trivial representation D0 of the Levi part, as we have
seen before (to the author’s knowledge, Lie algebras like these entered physics for the first
time with the Carroll Lie algebra of Bacry and Lévy-Leblond [12]). Since the classification
of the irreducible representations of the complex simple Lie algebra sl(2, C) provides real
representations of the normal form sl(2, R) and complex representations of the compact form
so(3), the embedding problem can be treated simultaneously for both cases. We detail the
embeddings for the algebra sl(2, R), the case of so(3) being completely analogue.

Let g = s
−→⊕ R⊕D0r be a perfect Lie algebra, where R does not contain further copies

of D0.

Proposition 4. Let sl(2, R)
−→⊕ R⊕D0r be a perfect Lie algebra. If R = ∑p

k=1 Dlk with lk ∈ N for

all k, then r can be isomorphic to the Heisenberg Lie algebra hm only if R = ∑ p

2
k=1

(
Dlk ⊕Dlk

)
.

Proof. Suppose first that R = ∑k
j=1 Dlj ⊕ D0 with dim R = 2m + 1 = dim hm. Let

{Y1, . . . , Y2m+1} be a basis of the Heisenberg Lie algebra, where the nonzero brackets are
given by

[Yi, Y2m+1−i] = ai,2m+1−iY2m+1. (19)

Since X1 acts diagonally on the elements of hm, we have [X1, Yi] = λiYi for 1 � i � 2m + 1.
Applying the Jacobi identity to such a pair and X1 we get

[X1, [Yi, Y2m+1−i]] + [Y2m+1−i , [X1, Yi]] − [Yi, [X1, Y2m+1−i]] = 0 (20)

which shows that λi + λ2m+1−i = 0 for all i since [X1, [Yi, Y2m+1−i]] = 0. This implies that the
number of integer spin representations Dl in the decomposition of R must be even, in order to
obtain the brackets corresponding to the vectors associated with the zero weight. For a given
l the action of sl(2, R) is given by

[X1, Yi+1] = (2l − 2i)Yi+1 i ∈ {0..2l} (21)

[X2, Yi+1] = (2l + 1 − i)Yi i ∈ {1..2l} (22)

[X3, Yi+1] = (i + 1)Yi+2 i ∈ {0..2l − 1}. (23)

Therefore the zero weight corresponds to the vector Yl+1 for each representation Dl . Now the
brackets [Yl+1, Yl+2] = 0 since λl+1 + λl+2 �= 0. Considering the Jacobi condition

[X2, [Yl+1, Yl+2]] + [Yl+2, [X2, Yl+1]] − [Yl+1, [X2, Yl+2]] = 0 (24)

we have that [Yl, Yl+2] = 0. Using induction on 0 � k � l, we get

[X2, [Yl+1−k, Yl+2+k]] + [Yl+2+k, [X2, Yl+1−k]] − [Yl+1−k, [X2, Yl+2+k]] = 0 (25)

from which we deduce that

[Yl−k, Yl+2+k] = 0 0 � k � l − 1 (26)

that is the brackets between the vectors corresponding to a copy Dl are all zero. In particular we
get that [Y1, Y2l+1] = 0, which shows that if the representation Dl appears in the decomposition
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of R, then another copy with the same maximal weight must appear. It suffices therefore to
consider pairs (Dl,Dl) of representations with the same maximal weight, since the general
case follows from direct sums over l. If {Y1, . . . , Y2l+1} and {Y ′

1, . . . , Y
′
2l+1} are bases of two

copies of Dl contained in R, then by (19) we must have [Yi, Y
′
2l+1−i] �= 0 if the radical is the

Heisenberg algebra. We consider the basis

{Y1, . . . , Y2l+1, Y
′
1, . . . , Y

′
2l+1} := {X4, . . . , X2l+4, X2l+5, . . . , X4l+5}

of the radical. The only brackets are

[X3+k, X4l+6−k] = akX4l+6 1 � k � 2l + 1 (27)

where the coefficients ak are the solutions of the system

2la1 + a2 = 0 (28)

(2l − k)ak+1 + (k + 1)ak+2 = 0 (29)

for 1 � k � 2l − 1. Without loss of generality we can choose a1 = 1, and solving the system
gives the coefficient formula

ak = − (−1)k(2l)!

�(k)�(2l + 2 − k)
1 � k � 2l + 1 (30)

where �(z) is the gamma function. It follows in particular that the coefficients are symmetric,
i.e. we have

aj = a2l+2−j 1 � j � l

and the only coefficient appearing once is al+1. Since the Jacobi conditions are satisfied,
equation (30) gives an embedding of h2l+1 as the radical of a perfect Lie algebra with describing
representation R = (Dl ⊕ Dl) ⊕ D0. The generalization is straightforward. �

It remains to see what happens for half-integer spin representations. Indeed it suffices to
prove it for representations of the type R = D 2m+1

2
⊕ D0, from which the general result will

follow at once.

Proposition 5. For any integer 2m + 1 � 1 there exists a perfect Lie algebra g =
sl(2, R)

−→⊕ D 2m+1
2

⊕D0r having the (2m + 3)-dimensional Heisenberg algebra as radical.

Proof. Let {X1, . . . , X2m+6} be a basis of g such that {X1, X2, X3} spans sl(2, R),

{X4, . . . , X2m+6} is a basis of r and such that [sl(2, R),X2m+6] = 0. The action of sl(2, R)

over {X4, . . . , X2m+5} is given by

[X1, Xi+4] = (2m + 1 − 2i)Xi+4 i ∈ {0..2m + 1} (31)

[X2, Xi+4] = (2m + 2 − i)Xi+3 i ∈ {1..2m + 1} (32)

[X3, Xi+4] = (i + 1)Xi+5 i ∈ {0..2m}. (33)

Since X1 acts diagonally and the radical is the Heisenberg Lie algebra, only vectors having
opposite weight for the action of X1 can have a nonzero bracket. Therefore, we obtain that

[X4+i , X2m+5−i] = λi+1X2m+6 0 � i � m. (34)

Applying the Jacobi condition to the triples {Xi,X4+j ;X4+k} with i = 2, 3, we obtain that the
coefficients λi+1 are solutions of the following system:

λ1 + 2m + 1 = 0 (35)

kλk + (2m + 2 − k)λk−1 = 0 2 � k � m. (36)
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Elementary algebraic manipulation and a recurrence argument allows us to obtain the following
formula for the coefficients λk

λk+1 = (2m + 1)�(2m + 1)(−1)k

�(k + 1)�(2m + 2 − k)
0 � k � m (37)

All other Jacobi conditions are automatically satisfied, so that (34) proves that the Heisenberg
Lie algebra is the radical of g. �

In the previous results, the gamma function �(z) appeared in the structure constants of r

due to the diagonal nature of the element X1 of sl(2, R), which forces us to rescale the basis
of the radical in order to adapt it to the coefficients of the action [X1, r] and the brackets of the
Heisenberg Lie algebra.

In consequence we obtain the general shape of sl(2, R)-representations leading to
irreducible embeddings of the Heisenberg algebra:

Corollary 1. Let sl(2, R)
−→⊕ Rr be a perfect Lie algebra with one-dimensional centre. Then r

is isomorphic to the Heisenberg Lie algebra only if

R =
p∑

i=1

(
Dji

⊕ Dji

) ⊕
q∑

l=1

D 2kl +1
2

⊕ D0

with ji, kl ∈ N.

Exactly the same analysis can be applied to the complex irreducible representations Dj of
so(3), with similar results. In particular, integer spin representations Dl (l ∈ Z) must appear in
pairs, while half-integer representations Dj can appear in single copies in the decomposition of
the defining representation R. To obtain the corresponding real representations, we use Cartan’s
theorem [27]. Recall that for the half-integer representations Dj given by the (complex) matrix
A = A1 + iA2, the real representation is obtained from the real matrix of double size

AII =
(

A1 −A2

A2 A1

)
. (38)

Following [27, 28], these representations are called of second class and denoted by DII
j . If

Dl is an integer spin representation, then there exists a change of basis such that the matrices of
Dl on the transformed basis are real. These representations are called first class and denoted by
DI

l . Therefore, once the complex representations RC of so(3) compatible with the Heisenberg
radical have been determined, the real representations R that can be combined with Heisenberg
algebras followed by application of the preceding method.

Corollary 2. Let so(3)
−→⊕ Rr be a perfect Lie algebra with one-dimensional centre. Then r is

isomorphic to the Heisenberg Lie algebra only if

R =
p∑

i=1

(
DI

ji
⊕ DI

ji

) ⊕
q∑

l=1

DII
2kl +1

2

⊕ D0

with ji, kl ∈ N.

5. Determinantal formula for the noncentral Casimir operator

As follows from the previous paragraphs, the embedding of Heisenberg Lie algebras as radical
of the perfect Lie algebra g whose Levi part is of rank 1 is essentially the same for the real
forms of sl(2). This similarity suggests that the study of the Casimir operators can also be
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developed simultaneously for both cases. Indeed we will have an interesting and unexpected
consequence concerning the Casimir operators of the corresponding perfect Lie algebra g.
This pathology is also exclusive of perfect Lie algebras having a one-dimensional centre, and
cannot occur for the type of algebras considered in [10, 11], and more concretely, for perfect
algebras having Abelian radicals.

Proposition 6. Let s
−→⊕ Rhm (m � 1) be a perfect Lie algebra with one-dimensional centre,

where s = sl(2, R) or so(3). Then

N (s
−→⊕ Rhm) = 2.

Proof. The commutator matrix of s
−→⊕ Rhm is of the shape

A(s
−→⊕ Rhm) =




A(s) · · · ρR(s)

...
...

−ρR(s)T · · · A(hm)


 (39)

where we can suppose that the matrix A(hm) corresponding to the radical is

A(hm) =




0 · · · 0 0 · · · α1z 0
...

...
...

...
...

0 · · · 0 αmz · · · 0 0
0 · · · −αmz 0 · · · 0 0
...

...
...

...
...

−α1z · · · 0 0 · · · 0 0
0 · · · 0 0 · · · 0 0




(40)

with Z generating the centre of hm (and s
−→⊕ Rhm) and the αi are nonzero. Since rank A(hm) =

2m and rank A(s) = 2, we easily see that rank A(s
−→⊕ Rhm) � 2m + 1. Due to the

presence of a zero row (corresponding to the centre) and the skew symmetry, it follows
that rank A(s

−→⊕ Rhm) = 2m + 2, and the assertion follows from (3). �

Observe further that from the two Casimir operators of s
−→⊕ Rhm, one of them corresponds

necessarily to the central element, so that we have only to compute one Casimir invariant. As
follows from the discussion of the general case, this second invariant will be dependent on all
the variables of s

−→⊕ Rhm. A direct calculation of it constitutes a hard problem for growing m,
so that a direct approach seems inappropriate. However, this second Casimir operator can be
determined explicitly starting from the basis used in the proof of propositions 4 and 5, if we
adapt a general method introduced in [26] to perfect Lie algebras of this type.

Theorem 1. Let s
−→⊕ Rhm (m � 1) be a perfect Lie algebra with one-dimensional centre,

where s = sl(2, R) or so(3). Then the noncentral Casimir operator C of g = s
−→⊕ Rhm is given

by the formula

C2 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣




x1

x2

x3

A(g) 1
2x4

:
1
2xdim g−1

−x1 −x2 −x3 − 1
2x4 · · · − 1

2xdim g−1 0




∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (41)
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The proof also follows by induction on m and is technically the same as the proof given
in [26] for Abelian radicals. It is based on the reformulation of system (2) in terms of total
differential equations, and the fact that the square root of the determinant above comprises the
solution to these equations [26, 29]. However, a very important remark must be made in this
case, namely that the matrix of (41) does not correspond to a Lie algebraic object (as it was
the case analysed in [26]), such as an extension or a deformation of the perfect Lie algebra
g. It is only a formal skew-symmetric linear operator which comprises the information of the
solutions of the system (2), and has no obvious interpretation within the frame of representation
theory. Inspite of this fact, formula (41) is an economical and easy method to determine the
Casimir operator of s

−→⊕ Rhm without being forced to solve PDEs, and can easily be deduced
from the commutator matrix A(g) of the algebra.

Consider, for example, the 12-dimensional Lie algebra sl(2, R)
−→⊕ D 7

2
⊕D0h4. Over the basis

{X1, . . . , X12} the action of sl(2, R) is given by equations (31)–(33), while the coefficients λk

of the radicals are, respectively,

λ0 = 1 λ1 = −7 λ2 = 21 λ3 = −35.

Clearly N (g) = 2 and I = x12 is an invariant for corresponding to the generator of the centre.
The noncentral invariant C is obtained by evaluation of the corresponding determinant (41),
and equals

C = 5x2
6x2

9 + 8
(
x3

8x6 + x3
7x9

)
+ 3430(x1x4x11x12 − x4x5x10x11) − 98x4x7x8x11

+ 140(x2x7x9x12 − x5x6x8x11 − x4x7x9x10 − x3x6x8x12) + 56
(
x5x

2
7x11

+ x3x
2
7x12 + x4x

2
8x10 − x2x

2
8x12

)
+ 980

(
x2x5x11x12 − x3x4x10x12 + x2x3x

2
12

)
+ 280

(
x2

5x9x11 + x4x6x
2
10 + x3x5x9x12 − x2x6x10x12

)
+ 40

(
x2

6x8x10 + x5x7x
2
9

)
− 16

(
x6x

2
7x10 + x5x

2
8x9

)
+ 490x4x6x9x11 − 3x2

7x2
8 − 22x6x7x8x9

+ 245x2
1x2

12 + 12 005x2
4x2

11 + 10x5x7x8x10 − 350x1x5x10x12 − 130x5x6x9x10

− 14x1x7x8x12 + 125x2
5x2

10 + 70x1x6x9x12.

The advantage of this method compared with a direct integration of the corresponding system
(2) or other alternative methods is considerable.

6. A stabilization result for higher ranks

The preceding results show that for all n � 1 the Heisenberg Lie algebra can be embedded into
a perfect Lie algebra with the Levi part sl(2, R), respectively, so(3). Moreover, the number
of Casimir operators is fixed, and the noncentral invariant can be computed by pure algebraic
means, using determinantal methods similar to those introduced in [26]. As commented, for
higher ranks of the Levi part s, the problem may have no solution for the first values, and
the problem is of interest once the lowest value has been found. It seems improbable that a
complete determination of the representations R of s compatible with the Heisenberg radical
can be found. However, for some special cases we will see that the number N (g) of Casimir
operators also stabilizes.

Let s be a semisimple Lie algebra and R a representation not containing copies of the
trivial representation D0 such that

g = s
−→⊕ R⊕D0h 1

2 dim R (42)

is perfect. Suppose moreover that N (g) = q.
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Theorem 2. For any k � 1 the Lie algebra

gk= s
−→⊕ kR⊕D0h k

2 dim R (43)

is perfect and satisfies the identity

N (gk) = q. (44)

Proof. The perfectness of the algebras is obvious. We prove the assertion by induction of k.
For k = 1 it is obviously true. Suppose it holds for k > 1. Without loss of generality we label
the copies of R by R1, . . . , Rk, Rk+1. The commutator matrix of A(gk+1) is of the shape

A(gk+1) =




A(s) ρR1(s) · · · ρRk
(s) ρRk+1(s) 0

−ρT
R1

(s) Ã
(
h 1

2 dim R

) · · · 0 0 0

: : : : :

−ρT
Rk

(s) 0 · · · Ã
(
h 1

2 dim R

)
0 0

−ρT
Rk+1

(s) 0 · · · 0 Ã
(
h 1

2 dim R

)
0

0 0 · · · 0 0 0




(45)

where the matrices Ã
(
h 1

2 dim R

)
comprise the commutators of h 1

2 dim R corresponding to
noncentral elements. By assumption, N (gk) = q, so that

rank A(gk) = dim s + k dim R + 1 − q. (46)

Since A(gk) is a submatrix of A(gk+1), we easily see that rank A(gk+1) > rank A(gk). Now
observe that the submatrix

B :=




ρR1(s) · · · ρRk
(s) ρRk+1(s)

Ã
(
h 1

2 dim R

) · · · 0 0

: : :

0 · · · Ã
(
h 1

2 dim R

)
0

0 · · · 0 Ã
(
h 1

2 dim R

)




(47)

has maximal rank, due to the fact that the radical of gk+1 is isomorphic to the Heisenberg Lie
algebra. In fact the matrix of the radical is, after a convenient permutation, a diagonal matrix
with nonzero entries. It is straightforward to see that we obtain that

rank




A(s) ρR1(s) · · · ρRk
(s)

−ρT
R1

(s) Ã
(
h 1

2 dim R

) · · · 0

: : :

−ρT
Rk

(s) 0 · · · Ã
(
h 1

2 dim R

)
−ρT

Rk+1
(s) 0 · · · 0

0 0 · · · 0




= dim gk − 1 (48)

for k > 1. Now the adjunction of the last (dim R) columns of A(gk+1) increases the rank
by (dim R) − q + 1, due to the fact that N (gk) = q (where the commutator matrix of the
semisimple part interacts with the representation) and the maximal rank of matrix (47). This
shows that the rank of A(gk+1) = A(gk) + (dim R), and by (3) we obtain

rank A(gk+1) = dim s + (k + 1) dim R + 1 − q (49)

which shows that N (gk+1) = q. �
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The interesting fact about this proof is that the rank of gk is determined by that of g1,
where the submatrix A(s) corresponding to the semisimple part plays an essential role. For
all further adjoined copies, due to the particular structure of the radical, the rank will be
obtained by adding the corresponding degree. In this sense we can say that the number of
invariants is given by the semisimple part and the representation R. It would be interesting to
know if a formula for all possible (nonequivalent) representations which express the number
of invariants of such perfect algebras exists (for rank �2, the rank 1 case following from the
preceding discussion).

To illustrate the argument of the proof, consider the ten-dimensional Lie algebra
g = sl(2, R)

−→⊕ 3D 1
2
⊕D0h3. Over a basis {X1, . . . , X10} the commutator matrix A(g) is given

by

A(g) =




0 2x2 −2x3 x4 −x5 x6 −x7 x8 −x9 0
−2x2 0 x1 0 x4 0 x6 0 x8 0
2x3 −x1 0 x5 0 x7 0 x9 0 0
−x4 0 −x5 0 x10 0 0 0 0 0
x5 −x4 0 −x10 0 0 0 0 0 0

−x6 0 −x7 0 0 0 x10 0 0 0
x7 −x6 0 0 0 −x10 0 0 0 0

−x8 0 −x9 0 0 0 0 0 x10 0
x9 −x8 0 0 0 0 0 −x10 0 0
0 0 0 0 0 0 0 0 0 0




. (50)

Since rank A(g) = 8, we getN (g) = 2. The noncentral Casimir operator can also be computed
easily using the determinantal method of (41). Observe that g′= sl(2, R)

−→⊕ 2D 1
2
⊕D0h2 is of

dimension eight and has also two invariants (such as g′′= sl(2, R)
−→⊕ D 1

2
⊕D0h1), and that the

submatrix of (50) obtained from the first seven and the last columns has rank 7 (the rank of
A(g′) + 1, due to the nonzero entries of the eight and ninth rows). This implies that the eight
and ninth columns cannot be independent of the first seven, but rather that the rank increases
by one. Therefore, we have rank A(g) = rank A(g′) + 2 = rank A(g′′) + 4. Thus the number
of invariants is fixed and depends only on that of A(g′′). However, it is not obvious how to
obtain the Casimir operators of A(g) starting from those of A(g′).

A direct consequence of this result is the possibility of generalizing some conclusions of
[13]: if we define wk(n) = hkn

−→⊕u(n) and wspk(n) = hkn
−→⊕ sp(2n, R) for k � 1, we obtain

that

N (wk(n)) = n (51)

N (wspk(n)) = n. (52)

In view of this, one should expect that the shift operator method used in [13, 22] to compute
the Casimir operators of w(n) and wsp(n) in dependence of those of u(n) and sp(2n, R) can
be generalized without problems to obtain the Casimir operators for any k > 2. Two questions
arise in this context. First, if the underlying representations of w(n) and wsp(n) expressing
the semidirect sum are the only compatible with the Heisenberg radical, or if there are others
not covered by wk(n) and wspk(n). The other question refers to the fact if for any perfect Lie
algebra having the Heisenberg radical the Casimir operators can be deduced by means of a
boson operator formalism like that of the preceding algebras. Of special interest is the case of
exceptional Levi subalgebras for their role in high energy physics [30]. This case is however
more involved due to the less transparent structure of their representations, and the fact that
the lowest dimensional perfect Lie algebra of this type appears in dimension 29.
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7. Conclusions

The analysis of the Casimir operators of perfect Lie algebras with nonzero centre is more
difficult than in the centreless case studied in [11], since the structure of the radical plays
a more important role than in the algebras studied there. A special case appears when the
radical has a one-dimensional centre, which implies automatically that the perfect algebra
has itself nontrivial centre (this being false if the radical has a centre of dimension at least
two). This fact allows us to obtain a criterion to eliminate the variables of the Levi part
and of some parts of the radical, thus to obtain partial stabilization results on the number
of Casimir operators. Moreover, in these cases the invariants of the whole algebra are
completely determined by some summand of the defining representation R of g. This fact
is typical of perfect algebras having a one-dimensional centre, and leads naturally to analyse
the embedding of Heisenberg Lie algebras hm (being characterized by their one-dimensional
centre coinciding with the derived subalgebra) into perfect Lie algebras. Physically this is
also the most relevant case due to the deep relation of the Heisenberg Lie algebra with the
harmonic oscillator. The stabilization result cited above naturally reduces the case where
the radical r is isomorphic to hm. The irreducible embedding of Heisenberg Lie algebras
into the perfect Lie algebra whose Levi part is of rank 1 has shown that perfect Lie algebras
with one-dimensional centre constitute a special class within perfect algebras, and that their
invariants can, under some restrictions, be determined explicitly. It has been pointed out that
for the two real forms of sl(2, C), the embedding of Heisenberg radicals is essentially the same
(up to the doubling of the dimension for the real representations of second class of so(3)).
The constancy of the number of Casimir operators also shows that upper bounds for N (g)

become quite ineffective, due to the stabilization of the number of Casimir invariants. This is
an exclusive phenomenon of nilpotent radicals of the lowest possible nilindex, and does not
occur in the perfect algebras of the type analysed in [11]. The corresponding invariants are
obtained by pure algebraic methods, starting from the commutator matrix of the algebra. As a
consequence, the eigenvalues of representations and other relevant quantities can be obtained
without effort from an extended commutator matrix. The interesting observation concerns the
expansion problem and the contractions of Lie algebras [31], since it shows that there exist
deformations of (decomposable) perfect Lie algebras with Abelian radical that kill almost all
Casimir operators. In fact, for the case of rank 1 Levi part analysed, the number of invariants
is minimal. One can ask if for higher ranks the (perfect) Lie algebras with Heisenberg
radicals also represent the class of Lie algebras having nontrivial Levi decomposition and a
minimal number of invariants. A complete answer seems difficult in view of the complexity
of characterizing all representations of a semisimple Lie algebra that lead to semidirect sums
having this structure. Some important cases have already been studied [22], which show
that under certain assumptions the boson realization of Lie algebras allow us to apply the
Perelomov–Popov formulae to compute the invariants. The advantage of the boson formalism
lies in the possibility of having supplementary manipulation freedom, since the brackets can
be expanded, while in the pure representation theoretical approach only the brackets have
a significance. This method has however an obvious advantage, namely the possibility of
recognizing more easily the representations involved. In this context, it is an interesting
problem whether any perfect Lie algebra (with the Heisenberg radical) can be described in a
closed form using boson realizations. Independently of its own interest, such a description
would be very useful for the analysis of branching rules or the classification of subgroup
structures [32, 33]. The stabilization result of section 6 shows that if once a representation
is known, further copies of it will not increase the number of Casimir operators of the
corresponding algebra. This reduces the problem to the determination of the representations.
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Another question that arises here is whether by a recurrence argument the invariants of the
algebras gk+1 (see (43)) can be obtained using the knowledge of the Casimir operators of gk .

Another potential application concerns the theory of linear partial differential equations.
The determinants (41) show that the solutions of the corresponding system can be evaluated
directly from the coefficients of the system, and that the number of independent solutions does
not depend on the number of variables. In particular these systems can be seen as deformations
of the systems corresponding to the contracted algebras having Abelian radical. Therefore
we see the possibility of deforming a linear system to have a minimal number of solutions. It
would be interesting to characterize all the systems of PDEs having this property.

Finally, these problems lead to the question whether perfect Lie algebras are the suitable
class to obtain intrinsic formulae for the Casimir operators, in analogy to the semisimple
case. It seems moreover from the known classifications [21, 34] that the radicals of perfect
Lie algebras are necessarily of very low nilpotence indices in order to be compatible with
nontrivial representations of semisimple algebras (unless the representation contains a great
number of copies of the trivial representation). If this assertion is proved to hold, this would
provide us a strong structural restriction that could allow a systematization and classification
of perfect Lie algebras and their invariants by pure representation theoretical means.

Acknowledgment

The author expresses his gratitude to the referee for drawing attention to some mistakes, as well
as for valuable suggestions that helped to improve the manuscript. During the preparation of
this work, the author was supported by a research fellowship of the Fundacion Ramón Areces.

References

[1] Gell-Mann M and Ne’eman Y 1964 The Eightfold Way (New York: Benjamin)
[2] Casimir H 1931 Proc. R. Acad. Amsterdam 34 844
[3] Racah G 1949 Phys. Rev. 76 1352

Racah G 1950 Atti. Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Nat. 8 108
[4] Gell-Mann M 1962 Phys. Rev. 125 1067

Racah G 1951 Group Theory and Spectroscopy (Princeton, NJ: Princeton University Press)
[5] Judd B R 1971 Advances in Atomic and Molecular Physics (New York: Academic)
[6] Arima A and Iachello F 1978 Ann. Phys., NY 111 201

Arima A and Iachello F 1978 Phys. Rev. Lett. 40 385
[7] Bersillon O and Schett A 1993 Classification des états rotationnels des noyaux à l’aide des diagrammes de
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[12] Bacry H and Lévy-Leblond J M 1968 J. Math. Phys. 9 1605

Bacry H and Nuyts J 1986 J. Math. Phys. 27 2455
[13] Quesne C 1988 Phys. Lett. B 188 1
[14] Fomenko A and Trofimov V V 1988 Integrable Systems on Lie Algebras and Symmetric Spaces (New York:

Gordon and Breach)
[15] Ndogmo J-C 2000 J. Phys. A: Math. Gen. 33 2273
[16] Ndogmo J-C and Winternitz P 1994 J. Phys. A: Math. Gen. 27 2787
[17] Campoamor-Stursberg R 2002 J. Phys. A: Math. Gen. 35 6293

Campoamor-Stursberg R 2002 Algebr. Groups Geom. 19 385
[18] Campoamor-Stursberg R 2003 J. Math. Phys. 44 771



The structure of the invariants of perfect Lie algebras II 3643

[19] Beltrametti E G and Blasi A 1966 Phys. Lett. 20 62
[20] Abellanas L and Alonso L M 1975 J. Math. Phys. 16 1580
[21] Turkowski P 1992 Linear Algebr. Appl. 171 197
[22] Quesne C 1988 J. Phys. A: Math. Gen. 21 L321
[23] Hugues J W B 1981 J. Math. Phys. 22 2275
[24] Cornwell J F 1984 Group Theory in Physics (New York: Academic)
[25] Hehl F W, McCrea J D, Mielke E W and Ne’eman Y 1995 Phys. Rep. 258 1
[26] Campoamor-Stursberg R 2003 Phys. Lett. A 312 211
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